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A B S T R A C T

Timber-Concrete Composite (TCC) structures allow taking synergistic advantage of the properties of both ma-
terials to optimize the overall performances in terms of lightness, slenderness, acoustic insulation, vibrational
behaviour and environmental footprint. In the last years, ductile shear connectors have been developed to allow
the structural ductility of TCC structures. Considering the limitations of current design methods, this work aims
at developing a closed-form solution for accurately predicting the nonlinear structural response of a TCC
structure directly from the materials' property and the shear law of ductile connectors. In particular, we have
assumed a generalized shear law based on 3 parameters which allow considering shear law from a pure elasto-
plastic to pure brittle behaviour.

After a short introduction, Section 2 briefly presents the basics of the well-estabilished elastic theory for a 2-
layer composite beam with a linear shear law in terms of horizontal shear vs. slip (Vh-s) law; Section 2.3 extends
the semi-analytical method proposed by Bažant and Vitek for composite structures with a generalized shear law;
Sections 3 extends the previous method by developing a new closed-form analytical solution for predicting the
TCC structural response for a generalized elasto-plastic Vh-s shear law described by an initial linear response up
to Vmax followed by a plastic plateau at a constant load, which can range from 0 to Vmax; Section 4 compares the
model results with the ones of existing methods and FEM analysis. Furthermore, a parametric analysis is carried
out to investigate the model sensitivity to the connector parameters; Finally, Section 5 presents a simple point-
by-point design procedure of which prediction accuracy of the ultimate moment, deflection and slip was sta-
tistically assessed for a large range of possible TCC structures against FEM analysis. Eventually, the effect of
concrete cracking is also considered and a correction factor is proposed for engineering purpose.

1. Introduction

In the last decade, there has been a renewed interest in Timber-
Concrete Composite (TCC) structures as they allow taking synergistic
advantage of the lightness of timber as well as the stiffness and cost
competitiveness of concrete, while enhancing vibrational behaviour,
acoustic insulation, and fire resistance [1–4]. As for rehabilitation
techniques, TCC technology provides cost-effective solutions for up-
grading timber ceilings [5] and timber bridges as well [6]. Moreover,
when compared to normal concrete floors, TCC structures can provide
beneficial environmental impacts in terms of embedded energy and
carbon emission [7–9].

From an historical point of view, the applications of TCC floors start
mainly in the post-war reconstruction period [10]. Due to the steel high
cost in the 1930s, hundreds of TCC bridges were constructed in USA

[11,12]. Today, more than 1400 TCC bridges are still in service in USA
and the oldest one is about 84 years [6]. As the concrete slab protects
the timber from water leaking, the TCC structural durability can be
strongly enhanced.

As for the TCC structural behaviour, the slip at the material inter-
face is practically unavoidable due to the wood deformability. The
connections allow transferring the horizontal shear and engender a
composite action, which strongly enhances the structural stiffness and
the load-carrying capacity [13–16]. In the last decades, several con-
nectors have been developed, such as: screws, studs [17–21], notch
filled with concrete [22–26], glued notches [27], steel plates [28,29],
etc. While the TCC serviceability limit states can be easily guaranteed
by stiff connections, TCC structures usually show a low deformation
capacity at the ultimate limit states due to the limited ductility of
concrete and timber. Thus, In the late years, several ductile
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connections, such as steel mesh plate [30], elongated composite con-
nectors [31], screw reinforced against splitting [32], and notch con-
nections [22,33], have been developed enhance the load-carrying ca-
pacity and ultimate deformation capacity of TCC structures [34].
Moreover, plastically designed TCC structures allow for large de-
formations prior to collapse and capacity of redistributing internal
forces [35,36].

From a design point of view, simplified methods for TCC structures
with a linear connector law were developed by Möheler and are
available in design codes under the name of γ-method [37,38]. How-
ever, only semi-analytical or numerical models exist for TCC structures
with connections characterized by non-linear shear behaviour
[35,39,40]. In particular, Bažant and Vitek developed an iterative nu-
merical method to analyze composite structures with connections de-
scribed by a piecewise linear (or segmented) shear law, but no analy-
tical solution was provided for the prediction of the structrual response
[41]. Notably, Frangi developed a simplified design method to predict
the ultimate load of TCC structures which is based on the assumption
that all the connectors yield simultaneously [42]. The Frozen-

analytical model has been lately developed to predict the entire struc-
tural response of TCC beams with notch connections designed to si-
multaneously yield [43]. However, for general TCC structures, the
connections yield gradually from the external beam ends, where the
shear is maximum. Based on nonlinear analysis within Finite Element
Method (FEM), Dias estimated the maximum connector spacing to
allow connection to yield before the brittle failure of the timber beam
[34].

This work aims at developing an accurate analytical model for
predicting the full structural behaviour of ductile TCC structures by
considering a simplified shear law Vh-s which is suitable for britte and
ductile connectors. The following sections introduce background works
and the proposed model. Then, the model validation is carried out
against existing linear and numerical methods. The model sensitivity is
investigated with respect to the connector parameters. An analytical
design method is then proposed to predict the structural response of
ductile TCC structures from three parameters describing the simplified
law of a ductile connector. Finally, the design method is validated
against a large variety of TCC structures and the possible effect of

Nomenclatures

A A,c t cross sectional area of the concrete and timber layer, re-
spectively [mm2]

ab slope of each linear interval on Vh-s relationship of con-
nector by Bažant’s method [N/mm2]

A B,ce ce supplement parameters by CEREMA method [–]
b b,c t width of the concrete and timber layer, respectively [mm]
bb supplement parameter of each linear interval on Vh-s re-

lationship of connector by Bažant’s method [N/mm]
D D D D, , ,e e e e1 2 3 4 supplement parameters for proposed solution [–]
E E,c t constant elastic modulus of concrete and timber, respec-

tively [N/mm2]
EA EA,c t axial stiffness of concrete and timber layer, respectively

[N]
EAh axial stiffness parameter of TCC beam [N]
EI EI,c t flexural stiffness of concrete and timber layer, respectively

[Nmm2]
EIeff effective flexural stiffness of TCC beam proposed by γ-

method [Nmm2]
∞EI EI,0 flexural stiffness of composite beam in No-composite and

Full-composite cases, respectively [Nmm2]
f f,c

T
c
C tensile and compressive strength of concrete, respectively

[N/mm2]
f f,t

T
t
B tensile and bending strength of timber, respectively [N/

mm2]
ft

C compressive strength of timber [N/mm2]
h h h, ,c t i height of the concrete, timber and interface layer, re-

spectively [mm]
hd distance between the centroid of rigidity of the concrete

and timber layer [mm]
I I,c t inertial moment of the concrete and timber layer, re-

spectively [mm4]
K elastic slip stiffness of connector by push-out test [N/mm]
k unitary elastic slip stiffness of continuous connection

system [N/mm2]
k k,s u unitary elastic slip stiffness in γ-method for SLS and ULS

cases, respectively: = =k k k k,s u
2
3 [N/mm2]

L span length of the beam (supposed working with simple
supports at two ends) [mm]

lsp equidistant spacing between punctual connectors [mm]
M M M M, , ,ext ca c t external moment, composite action moment,

concrete moment and timber moment [Nmm]
Mmax maximum external moment (at mid-span) [Nmm]

Mcr critical external moment (at failure of the beam) [Nmm]
N axial force function by composite action [N]
Nmax maximum axial force (at mid-span) [N]
Nlim asymptotic function of maximum axial force [N]
Ncr critical axial force (at failure of the beam) [N]
q function of external distributed load [N/mm]
q0 value of external distributed load at mid-span [N/mm]
qD value of q0 at the division between elastic phase and in-

elastic phase [N/mm]
qcr Critical load (at failure of the beam) [N/mm]
s slip function on interface [mm]
smax maximum slip (at the end of the beam) [mm]
slim asymptotic function of maximum slip [mm]
scr critical slip (at failure of the beam) [mm]
sD limit of slip divided elastic and inelastic behavior of con-

nector [mm]
t ratio of load q0 with limit load for elastic phase qDa [–]
tcr critical value of t (at failure of the beam) [–]
Vext external shear force [N]
VH shear force of connector by push-out test [N]
V V,H Hr0 Maximum shear force and residual shear force by push-out

test [N]
Vh shear flow of connector for length unit: =Vh

V
l

H
sp

[N/mm]
V V,h hr0 maximum shear flow and residual shear flow for length

unit [N/mm]
w deflection function of composite beam (negative) [mm]
wmax maximum deflection at mid-span (positive) [mm]
wlim asymptotic function of maximum deflection [mm]
wcr critical deflection (at the failure of the beam) [mm]
x variable of position on the length of the beam with origin

at mid-span [mm]
xD position function of divided point between elastic zone

and plastic zone on the length of the beam [mm]
α parameter: = ∞α d

EI
EI EA

1
h0
[1/Nmm]

χ curvature function of TCC beam [mm−1]
σ σ,t

T
t
B tensile and bending stresses at the lower fiber of timber,

respectively [N/mm2]
φ failure criterion of timber and beam: [–]
φlim asymptotic function of failure criterion [–]
γ parameter for evaluating composite degree of TCC beam

proposed by γ-method [–]
θ rotation function of TCC beam [–]
ω parameter: =ω a dkb [1/mm]
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concrete cracking is considered.

2. Background on analytical models for TCC structures

This section briefly recalls the main equations of existing analytical
and semi-analytical models for TCC structures, especially the one of
Bažant and Vitek which has been extended in this work [41]. The fol-
lowing hypotheses are accepted: (i) the Euler-Bernoulli beam theory is
applied on each layer; (ii) concrete and timber behave linear elastically;
(iii) no uplift between two layers is considered; (iv) simple supported
beam with span L subjected to uniformly distributed load.

2.1. Governing equations of a composite beam

The theory of two composite beams (or layers) with a sliding in-
terface was developed in the 1940′s [44–46] and, then, successfully
applied in several works for analyzing the structural behaviour of TCC
structures [47–52]. Further hypotheses are considered: (i) the hor-
izontal shear force Vh is linearly proportional to the timber-concrete
interface slip; (ii) the connection system is considered as continuous
and uniformly distributed. For discrete connectors, the slip modulus K
and the resistance VH are divided for the connector spacing. Based on
such hypotheses, the structural behaviour of the composite beam can be
described by a couple of governing differential equations as follows:

⎧

⎨
⎪

⎩⎪

⎡
⎣

+ ⎤
⎦

=

− + =

∂ ∂

∂
∂

∂
∂

EI N h q x a

N x h b

(x) ( ) ( )

( ) 0 ( )

h
x

h w x
x d

k
N x
x EA

w x
x d

0
( )

1 ( ) 1 ( ) 2

d d

h

2
2

2

2

2

2

2

2 (1)

where

= + + =
+

h h h h EA EA EA
EA EA2 2

;d
c t

i h
c t

t c (2)

= + = +∞EI EI EI EI EI EA d;c t h0 0
2 (3)

where q(x) and w(x) are respectively a function of distributed load,
distributed moment and deflection of the beam. Such differential
equations have been solved using classical Finite element method
[39,40,53]. Note that Eq. (1a) is the Navier beam equation with the
additional coupling term of N(x)hd, while Eq. (1b) describes the equi-
librium of the normal force on each layer. Eq. (1b) can be written as
follows:

∂
∂

− = −∞

k
N x
x

EI
EI EA

N x h
EI

M x1 ( ) ( ) ( )
h

d
ext

2

2
0 0 (4)

Once the axial force N(x) is known from Eq. (4), the threefold
moment contribution can be estimated as follows:

= = −

= −

M x N x h M M x M x EI
EI

M x M x M x EI
EI

( ) ( ) ; [ ( ) ( )] ;

( ) [ ( ) ( )]

ca d c ext ca
c

t ext ca
t

0

0 (5)

The maximum stress at the bottom fiber of the timber section can be
estimated from the timber moment Mt and the axial force N in the mid-
span section (x = 0), as follows:

= =σ N
A

σ M
I

h(0) ; (0)
2t

T

t
t
B t

t

t

(6)

where the subscript t stands for timber, while superscript B and T stand
for Bending and Tension. It is reasonable to assume that the failure of a
TCC structure occurs when the timber beam breaks in a brittle manner
[1,2], i.e., with little deformation when the lower fiber of timber
reaches its tensile strength by the combination of tensile and bending
stresses as follows:

= + ⩽φ
σ N

f
σ M

f
( ) ( )

1t
T

t
T

t
B

t

t
B (7)

Finally, the boundary conditions in terms of curvature χ, rotation θ
and deflection w are as follows

= = = −χ x M x
EI

M x
EI

M x M x
EI

( ) ( ) ( ) ( ) ( )t

t

c

c

ext ca

0 (8)

= ′ = ′ = ⎛
⎝

⎞
⎠

= ⎛
⎝

− ⎞
⎠

=′χ x θ x w x θ w L w L( ) ( ) ( ); (0) 0 ;
2 2

0
(9)

2.2. Möhler or γ-method

Equation (4) was analytically solved by assuming a linear shear-slip
relationship =V k s·h and a sinusoidal load =q x q πx L( ) cos( )0 by
Möhler [54]. Such model has been adopted in the Eurocode 5 in the
Annexe B for modeling TCC structures under the name of γ–method
[38]. The solution in terms of axial force N(x), shear flow Vh(x), slip s
(x) and maximum deflection wmax reads:

=
+

=
+

N x
γEA EA

γEA EA
h

EI
M x V x

γEA EA
γEA EA

h
EI

V x( ) ( ); ( ) ( )c t

c t

d

eff
ext h

c t

c t

d

eff
ext

(10)

= =s x
k

V x w
q L
EI

( ) 1 ( ); 5
384h

eff
max

0
4

(11)

where the parameters are defined as follows:

=
+

=
+

=
+

γ a
γEA

γEA EA
h a EA

γEA EA
h1

1
; ;

π EA
kL

t
c

c t
d c

t

c t
d

c2
2 (12)

Finally, the effective stiffness according to the γ–method reads:

= + +EI EI γEA a EA aeff c c t t0
2 2 (13)

It is worth mentioning that the EIeff was found to predict fairly well
the deflection of the beam also for different load pattern [1,15]. Fur-
thermore, for estimating the ultimate resistance, Eurocode 5 simply
assumed a reduced elastic slip stiffness =k k2 3u [37].

2.3. CEREMA method

In a different way from the γ–method, Renaudin analytically solved
Eq. (4) by assuming a sinusoidal slip [55], which we call herein as
Cerema method. Equation (4) is rewritten as follows:

∂
∂

− = −N x
x

A N x B M x( ) ( ) ( )ext
2

2 (14)

where

= =∞A k EI
EA EI

B kh
EI

;
h

d

0 0 (15)

The solution N(x) is expressed as the sum of the general hyperbolic
solution Ng(x) as:

= + + − = +−N x C C e C C e C A x C A x( )
2 2

cosh( ) sinh( )g
A x A x1 2 1 2

1 2

(16)

where constants C1 and C2 can be found by imposing the boundary
conditions = ==− =N N 0x L x L( 2) ( 2) as follows:

= =
( )

C B

A
q C

cosh
; 0

L A
1

2
2

0 2

(17)

In the case of uniformly distributed load =q x q( ) 0, the function of Ns

(x) reads:
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⎜ ⎟= − + ⎛
⎝

− ⎞
⎠

N x B
A

q x B
A

L
A

q( )
2 8

1
s 0

2
2

0 (18)

2.4. Semi-analytical solution for nonlinear Vh-s law [41]

Bažant and Vitek developed a semi-analytical method for predicting
the structural response of a steel–concrete structure [41]. Such re-
lationship was developed for stud connectors for steel–concrete com-
posite beam for which Vh-s presents a segmented (or piecewise linear)
relationship as shown in Fig. 1a, which is composed by 4 intervals: (i)
perfect composite (no slip, ab=∞); (ii) hardening phase (ab > 0); (iii)
softening phase (ab < 0); (iv) final plastic plateau (ab = 0). As starting
point, the equilibrium relations between axial force N(x) with shear
flow Vh(x) and external moment Mext(x) with external shear force Vext

(x) read:

= ∂
∂

= ∂
∂

V x N x
x

V x M x
x

( ) ( ) ; ( ) ( )
h ext

ext
(19)

Substituting Eq. (19) into Eq. (4) yields:

∂
∂

− = −∞

k
V x

x
EI

EI EA
V x h

EI
V x1 ( ) ( ) ( )h

h
h

d
ext

2

2
0 0 (20)

In the elastic phase =V x k s x( ) · ( )h and Eq.(20) can be rewritten as
follows:

∂
∂

− = −∞s x
x

EI
EI EA

ks x h
EI

V x( ) ( ) ( )
h

d
ext

2

2
0 0 (21)

For each linear range of the piecewise Vh-s law shown in Fig. 1a, a
linear relationship can be assumed, such as, = +V x a s x b( ) ( )h b b, where
ab and bb are constants. Thus, Eq. (21) reduces to:

∂ +
∂

− + = −∞

a
a s x b

x
EI

EI EA
a s x b h

EI
V x1 [ ( ) ] [ ( ) ] ( )

b

b b

h
b b

d
ext

2

2
0 0 (22)

∂
∂

− = − +∞ ∞s x
x

EI
EI EA

a s x h
EI

V x b EI
EI EA

( ) ( ) ( )
h

b
d

ext b
h

2

2
0 0 0 (23)

By defining the following parameters

= ⎧
⎨⎩

= ⩾

= − <
∞α

h
EI

EI EA
ω αda a

ω αda a
1 ;

, 0

, 0d h

b b

b b0 (24)

the governing differential equations (22) and (23) can be recast in a
more compact form as follows

⎧

⎨
⎩

− = − + ⩾

+ = − + <

∂
∂

∂
∂

ω s x qx b αd a

ω s x qx b αd a

( ) 0

( ) 0

s x
x

h
EI b b

s x
x

h
EI b b

( ) 2

( ) 2

d

d

2

2 0
2

2 0 (25)

Unfortunately, the connectors work according to the different seg-
ments = +V x a s x b( ) ( )h b bin different beam segment of which positions

are unknown and change with the loading level. Thus, Eq. (25) can be
solved only by iteration calculations in a semi-analytical manner. In-
terestingly, Bažant and Vitek’s method reduces to CEREMA exact so-
lution for a linear law.

3. Proposed analytical model for brittle-to-ductile shear connector
laws

3.1. Shear law for connector

The scope of this section is to develop an approximate closed-form
solution of the Bažant and Vitek’s method by assuming a simpler law
which is suitable for ductile connectors. Fig. 1b shows the simplified
shear connector law assumed in this work, which comprises three
possible variants of the Vh-s law, such as: (i) general elasto-plastic (GEP)
where = =a V s kb h D0 and =b 0b ; (ii) elasto-perfectly plastic (EPP)
where =a 0b and =b Vb hr ; (iii) Brittle Elastic (BE) with =V 0hr , i.e., a
sudden connector failure when the shear reaches the maximum shear
flow Vh0. In the following section, an analytical solution of the struc-
tural response in terms of the shear connector parameters (Vh0, Vhr and
sD) is sought.

As for an example, Fig. 2a shows typical experimental shear re-
sponses of different kinds of connectors in terms of the shear VH vs slip
s. In particular, the shear law of recently developed ductile connectors
is qualitatively reported, such as, steel mesh connectors [28,30], notch
connectors [42,43,56], composite dowel [57], etc. In general, the
higher the connector strength is, the more brittle is the structural be-
havior. Fig. 2b shows qualitative examples of GEP, EPP and BE shear
laws Vh-s which could be used to simplify different connector shear
behaviour. In particular, such approximation is more suitable for con-
nectors with an actual ductile behaviour, at least up to a certain max-
imum slip. The next section will discuss further this point.

3.2. Solution in the elastic phase

For a simply supported beam with span L subjected to uniform load
q0, the external moment and external shear read as follows:

= − =M x
q L q x

V x q x( )
8 2

; ( )ext ext
0

2
0

2

0 (26)

At low loading level, the connectors behave elastically as described
by Eq (4). The governing equation in terms of the slip and its boundary
conditions reads:

∂
∂

− = − = ∂
∂

⎛
⎝

⎞
⎠

=s x
x

ω s x h
EI

q x with s s
x

L( ) ( ) ; (0) 0;
2

0d
2

2
2

0
0 (27)

The exact solution of Eq. (4) is then:

= − +−s x D e D e D x q( ) ( )exact e
ωx

e
ωx

e1 1 2 0 (28)

Fig. 1. (a) Connector shear law Vh-s employed by Bažant et al. [41]; Generalized connector shear laws considered in this work with (b) Vhr < Vh0; (c) Vhr = Vh0; (d)
Vhr = 0.
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where the following coefficients De1 and De2 are defined:

=
+

=
−( )

D h

EI ω e e
D h

EI ω
;e

def d
e

def d
1

0
3

2
0

2Lω Lω
2 2 (29)

In the elastic phase, the slip at the beam end is proportional to the
load q0 and can be determined as follows:

⎛
⎝

⎞
⎠

= ⎛
⎝

− + ⎞
⎠

=−s L q D e D e D L q D q
2

,
2exact e e

Lω
e e0 1 1 2 2 0 3 0

Lω
2

(30)

where the coefficient De3 is defined as follows:

= ⎛
⎝

− + ⎞
⎠

−D D e D e D L
2e

def
e e

Lω
e3 1 1 2 2

Lω
2

(31)

As mentioned before, Eq. (28) cannot be solved analytically beyond
the elastic limit due to the unknown position of the point xD, after
which the connectors undergo inelastic deformation. In this work, we
employ an approximate solution based on an approximation of the
exact solution Eq.(28), which respects the boundary conditions, as
follows:

= ⎛
⎝

− + ⎞
⎠

s
L

D x
L

D x q4 4
appro e e2 3

2
3 0 (32)

Consequently, the other variables in the elastic phase (represented
by superscript E) can be estimated as follows:

= ⎛
⎝

⎞
⎠

= ⎛
⎝

⎞
⎠

=s q s L q s L q D q( )
2

,
2

,E E
exact emax 0 0 0 3 0 (33)

= = ⎛
⎝

− + ⎞
⎠

V x q ks x q V
s L

D x
L

D x q( , ) ( , ) 4 4
h
E E h

D
e e0 0

0
2 3

2
3 0 (34)

= ⎛
⎝

− + + ⎞
⎠

N x q kD q
L

x
L

x L( , ) 4
3

2
3

E
e0 3 0 2

3 2
(35)

= = =N q N q kLD q D q( ) (0, )
3

E E e
emax 0 0

3
0 4 0 (36)

where the coefficient De4 is defined as follows:

=D kLD
3e

e
4

3
(37)

The elastic deflection reduces to the following expression:

⎜ ⎟= ⎡
⎣⎢

− − ⎛
⎝

− + ⎞
⎠

⎤
⎦⎥

+ −

w x q

q
EI

L x x D d x
L

x
L

x L dD L
EI

q

( , )

16 24 5 2 2
(192 25 )

1920

E

e
e

0

0

0

2 2 4
4

5

3

4

2

2 2
4

2

0

0 (38)

of which the maximum value is expressed by

= = − −w q x L dD L
EI

q( , 0) (192 25 )
1920

E e
max 0

2
4

2

0
0 (39)

Thus, the internal moments (Mca, Mc, Mt) and the failure function
(φ) can be straightforwardly calculated by Eqs. (5), (6) and (7). The
elastic domain ends when the shear flow and slip at the beam ends
reach the limit Vh0 and sD, respectively (Fig. 1b). The load at the end of
the linearity qD can be then estimated as follows

⎛
⎝

⎞
⎠

= = ⇔ =s L q D q s q s
D2

,exact D e D D D
D

e
3

3 (40)

where the letter D is employed to refer the end of linear elastic range.
Consequently, the other variables at the end of the linear domain read:

= = =N N q D q D
D

s( )D E
D e D

e

e
Dmax max 4

4

3 (41)

= = − − = − −w w q L dD L
EI

q L dD L
EI

s
D

( ) (192 25 )
1920

(192 25 )
1920

D E
D

e
D

e D

e
max max

2
4

2

0

2
4

2

0 3

(42)

⎜ ⎟= = + ⎛
⎝

− ⎞
⎠

φ φ q D
D

s
A f

s L
D

D
D

s d E h
EI f

( )
8 2

D E
D

e

e

D

t t
T

e

e

e
D

t t

t
B

4

3

0
2

3

4

3 0 (43)

3.3. Solution in the plastic phase

When q > qD, the connectors undergo to inelastic deformation. The
zone of the inelastic behavior of the connections starts at the beam-ends
and gradually propagates towards the mid-span. The mathematical
challenge is to determinate analytically the position of point xD, which
discerns the connectors working elastically from the ones working in
the inelastic range. Based on the assumption that the slip along the
elastic zone has the same solution as the elastic phase, it follows

= ⇔ ⎛
⎝

− + ⎞
⎠

=s x q s
L

D x
L

D x q s( , ) 4 4E
D D e D e D D0 2 3

2
3 0 (44)

Thus, xD can be estimated from the following equation:

=
− −

x q
D q D q D q s

D q
L( )

( )
2D

e e e D

e
0

3 0 3 0
2

3 0

3 0 (45)

For the sake of simplicity, the non-dimensional load level t is de-
fined as follows:

= = ⩾t
q
q

D
s

q t 1
def

D

e

D

0 3
0 (46)

Substitution of Eq. (46) into Eq. (45) yields

Fig. 2. (a) Examples of experimental shear law VH-s of different connectors as measured by pushout tests [After 1]. (b) Example of simplified shear laws (GEP, EPP,
BP) for different connector types.
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⎜ ⎟= ⎛
⎝

− − ⎞
⎠

x t L
t

( )
2

1 1 1
D

(47)

As an example, Fig. 3(a) shows the relationship of xD as a function of
q0 and t (q0 and t have proportional relation according to Eq.(46)).
When t > 1 (i.e., q0 > qD), the point xD quickly moves forward to-
wards the mid-span, e.g., ==x L0.5D t( 1) and ==x L0.146D t( 2) . Interest-
ingly, when t > 2, xD moves more slowly to the asymptotic value
(x = 0). Fig. 3(b) shows the distribution of shear flow Vh along the
beam length. In the interval [−xD, xD], the connector system presents
elastic behavior, which is called the elastic zone. At the point xD (and
-xD), the shear flow is the maximum value Vh0. Beyond xD to the end of
each side (left and right), the connectors undergo plastic deformation
and shear flow stays at constant value Vhr. In the following, we will call
the left and right plastic zone P1 and P2, respectively.

The shear flow can be then described as follows

= ⎧
⎨⎩

≤ ≤
≥

V x t
V x q x x t x x t
V x x t

( , )
( , ) ( ) ( )

( )h
P h

E
D D D

hr D (48)

where superscript P stands for Plastic phase. In the right plastic zone P2,
the governing equation in Eq. (25) becomes

∂
∂

= − +s x t
x

h
EI

ts
D

x αh V( , )P
d D

e
d hr

2 2

2
0 3 (49)

with the following boundary conditions:

= ∂
∂

⎛
⎝

⎞
⎠

=s x t s
x

s L t( , ) ;
2

, 0P
D D

P2 2
(50)

The distribution of slip function in the plastic phase is now recast as
follows:

= ⎧
⎨⎩

≤
≥

s x t
s x q x x
s x t x x

( , )
( , )
( , )

P
E

D D
P

D
2 (51)

Thus, the maximum slip at the beam end reads:

⎜ ⎟

= ⎛
⎝

⎞
⎠

= + − ⎛
⎝

− − ⎞
⎠

−

⎛
⎝

− ⎞
⎠

s t s L t

s
D EI

h L s t
t

αV h

L
t

( )
2

,

1
48

( 1) 3 1 1 1
8

1 1

P P

D
e

d D hr d

max
2

3 0

3

2
(52)

The axial force is estimated by integration of the shear flow along
the plastic zone as follows

= ⎛
⎝

− ⎞
⎠

N x t V L x( , )
2

P
hr

2
(53)

Analogously, in the elastic zone limited condition at xD, N can be

estimated:

=N x t N x t( , ) ( , )P
D

P
D

1 2 (54)

The maximum axial force at mid-span section (x = 0) is then a
function of t:

=

= ⎧
⎨⎩

− + − + ⎫
⎬⎭

N t N t

D
V LD s D t

t
D s t

( ) (0, )

1
2

[ (2 1)] 1 1 2

P P

e
hr e D e e D

max
1

3
3 4 4

(55)

The maximum moment at mid-span section (x = 0) is calculated as
a function of t:

= =M t L q L s
D

t( )
8 8

D

e
max

2

0

2

3 (56)

The maximum deflection at mid-span section (x = 0) is calculated
as a function of t:

=
−

− −

⎧

⎨

⎪
⎪
⎪
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⎪
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M
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2 2
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8
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2
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8
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(57)

Finally, the failure function can be simplified as follows:

= + −φ t
N t

A f
M t N t d E h

EI f
( )

( )
[ ( ) ( ) ]

2
P

P

t t
T

P t t

t
B

max
max max

0 (58)

Lastly, the deformation variables (deflection, curvature and rota-
tion) can be estimated by imposing the symmetry conditions as follows

= =

= = =
( )w x t w x t w t

θ x t θ x t θ t χ x t χ x t

( , ) ( , ); , 0 ;

( , ) ( , ); (0, ) 0; ( , ) ( , );

P
D

P
D

P L

P
D

P
D

P P
D

P
D

1 2 2
2

1 2 1 1 2

(59)

3.4. Asymptotic limits

Interestingly, when the non-dimensional load t (or q0) increases

Fig. 3. (a) Division point xD as a function of load; (b) Shear flow as a function of x.
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during the plastic phase, the function N tends to become linear for high
values of t. That is, once that all the connectors have gradually plasti-
cized, the structural behaviour becomes again linear. In more details, N
tends to an asymptotic limit as follows:

=

= ⎧
⎨⎩

⎡
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− + − + ⎤
⎦⎥
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⎬⎭
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t
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lim ( )
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2

( (2 1)) 1 1 2

2

t
P

t e
hr e e e

hr

lim max

3
3 0 4 4 0

(60)

Similarly, the asymptotic limits for slip, failure function and de-
flection of structure as follows:

= = −
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−
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0 (63)

Fig. 4 compares the asymptotic limits (dashed lines) with the full
functions (bold lines) for different residual shear strength (Vhr = 0%,
50% and 100% Vh0). Clearly, all the main variables describing the TCC
structural behaviour tends to linear asymptotic limits. It is worth no-
ticing that such asymptotic functions are composed by two parts: (i) one
part depending on the load q0, which corresponds to the case of no-

composite action; (ii) the second part depending on the residual
strength Vhr (0).

4. Results and discussion

In the following, as for validation, the results of the proposed model
have been compared against: (i) a numerical FEM models which has
been well validated against several experimental tests on TCC beams
[13,57,58]; (ii) analytical models which are commonly used of which
applicability is limited by the assumed linearity of the connection shear
law [54]; (iii) a push-out model which has been validated for ductile
connectors in a previous work [35,59].

4.1. Validation of the proposed model against existing elastic methods and
FEM analysis

First, the developed method was compared against analytical
methods (γ-method and CEREMA method) and a non-linear FEM model
[39]. Fig. 5a shows a case study of TCC beam for a bridge application,
which is chosen from the work of Gendron et al. [58]. As for the con-
nection law, we arbitrarily consider an EP law (Fig. 1b) with
Vh0 = 100 N/mm, sD = 1 mm, Vhr = 50 N/mm, k = 100 N/mm2. Thus
the model parameters presented can be estimated as follows:
d = 250 mm, EAc = 1.50 × 109 N, EAt = 6.00 × 108 N,
EAh = 4.29 × 108 N, EIc = 1.25 × 1012 Nmm2, EIt = 8.00 × 1012

Nmm2, EI0 = 9.25 × 1012 Nmm2, EI∞=3.60 × 1013 Nmm2,
De1 = −4.53 × 10-3, De2 = 2.97 × 10-5, De3 = 2.96 × 10-2,
De4 = 3.95 × 103, α = 3.636 × 10-11, ω = 9.534 × 10-4,
qD = 33.73 N/mm.

4.1.1. Validation in the elastic domain
Fig. 6 compares the solution of the proposed method against linear

methods (γ–method and CEREMA method) in terms of slip s, axial force

Fig. 4. Asymptotic limits for (a): Failure function vs. load; (b): Maximum slip vs. load; (c): Maximum axial force vs. load; (d): Maximum deflection vs. load.

T.-T. Nguyen, et al. Engineering Structures 221 (2020) 110826

7



N, timber moment Mt and deflection w in the elastic range at the load
level of t = 3% (i.e., q = 1 N/mm and qD = 33.73 N/mm). The results
of γ–method are identical with the exact solution (which is CEREMA in
this case), while the proposed solution shows very close results with a
maximum discrepancy of 5% greater. In particular, the proposed ap-
proximate solution is slightly stiffer in terms of deflection and the slip
prediction, while it slightly overestimates the axial force and timber
moment.

4.1.2. Validation in the plastic domain
As for the plastic domain, Fig. 7 compares the solution of the pro-

posed method against linear methods (γ–method with =k k2 3u and
CEREMA method) and a nonlinear FEM model for TCC structures [60]
at a load level of t = 1.48% (i.e., q = 50 N/mm greater of qD). The
considered FEM model, which allows considering any kind of non-
linear Vh-s law and concrete cracking, has been well validated again
several experimental results of TCC beams [60]. In this context, the
FEM solution is considered as the exact or reference solution. The
proposed solution predicts with high accuracy the exact solution in

terms of the axial force N and timber moment Mt, while linear solutions
(CEREMA method and γ–method with ku at ULS) strongly overestimate
N and underestimate Mt. As for the slip function (Fig. 7a), the proposed
solution slightly underestimates the exact solution by predicting a
longer elastic zone. In the same way, Fig. 7d shows that the plastic
plateau of the proposed solution is slightly smaller than the exact so-
lution. Yet, the linear methods show much less accurate results in
predicting the distribution of the slip s and shear flow Vh.

Table 1 compares the considered methods in terms of the prediction
of main variables at the end of the elastic domain (q0 = qD) and at
structural failure =φ 1 based on Eq. (7). The percentage error with
respect to the exact FEM solution is also reported between quotes. For
the sake of comparison, the analytical solutions for no and full com-
posite action are also reported. The capacity of the proposed approx-
imate method is satisfactory in predicting the load at the end of line-
arity and at failure. The proposed method slightly overestimates the
deflection at the end of linearity of about (-5.3%), but it predicts well
the deflection at ultimate limit state (+0.3%)

Finally, Fig. 8 compares the proposed method and its asymptotic

Fig. 5. Case study of TCC structure for comparing the different methods.

Fig. 6. Comparison of different methods in the elastic domain at t = q/qD = 3% in terms of distribution of (a) slip s; (b) axial force N; (c) timber moment Mt and (d)
deflection w.
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limits against the FEM solutions in terms of failure functionφ, maximum
slip smax, maximum axial force Nmax and maximum deflection in func-
tion of the applied load. The proposed method predicts well the FEM
solutions. Note that the FEM solution and the proposed method tend to
the asymptotic limits for high load levels (t > 1) while approaching
the ductile failure.

4.2. Validation against non-linear push-over method [59]

Zhang presented a semi-analytical solution for TCC structures with
perfectly elasto-plastic shear law based on superposition of linear cal-
culations of the TCC structure after each connector yielding [59]. This
method was called non-linear static push-over analysis in the works of
Gauvreau [61]. For this comparison, we consider the case study pro-
posed by Zhang of a simply supported beam subjected to uniform load
with following parameters [59,59]: L = 8000 mm, hi = 0 mm,
Ec = 42000 N/mm2, hc = 80 mm, bc = 1000 mm, Et = 12400 N/mm2,
ht = 300 mm, bt = 130 mm, VH0 = VHr = 40 kN, K = 100 kN/mm,
lsp = 500 mm, The strengths of timber are assumed to be: ftT = 30 N/
mm2, ftB = 45 N/mm2. The model parameters can be then calculated as
follows: hd = 190 mm, EAcon = 3.36 × 109 N, EAtim = 4.84 × 108 N,
EAh = 4.23 × 108 N, EIc = 1.79 × 1012 Nmm2, EIt = 3.63 × 1012

Nmm2, EI0 = 5.42 × 1012 Nmm2, EI∞=2.07 × 1013 Nmm2, De1 = -
6.69 × 10-5, De2 = 1.94 × 10-5, De3 = 6.32 × 10-2, De4 = 3.37 × 104,
α = 4.75 × 10-11, ω = 1.34 × 10-3, qD = 6.33 N/mm.

Fig. 9a compares the proposed method with the push-over method
and FEM solution in terms of load vs. deflection. Moreover, the Frozen
Shear Method [10] (FSM), which assumes that all connector plasticize
simultaneously, is also compared. It is worth reminding that the FSM is
simply a bilinear load–displacement curve which is composed by the
linear response according to γ-method, followed by the unconnected
beam stiffness after the plasticization of the external first connector.

As a result, the proposed solution is slightly stiffer than those of
other methods in the elastic phase, but when the load increases to the
plastic domain, the proposed method is well in agreement with FEM
solutions and push-over method. It is interesting to note that all
methods tend to the asymptotic linear solution of Eq. (63). Analogously,
Fig. 9b compares the predicted maximum axial force of the proposed
method. The push-over method reaches the asymptotic linear solution
before the FEM and the proposed model because the connector system
is modeled in a discrete manner (i.e., each discrete connector is plas-
ticized one after another), while the proposed method and FEM is
calculated with equivalent continuous connectors with spread stiffness.
However, the proposed method has an important advantage as it avoids
any iterative calculation and computation efforts. Finally, the FSM
method does not capture well the transition from elastic-to-plastic do-
main due to the assumption of simultaneous plasticity of all connectors,
which causes an underestimation of the structural response after the
linear domain.

Fig. 9a and b show that the structural behavior of a ductile TCC with
ductile connectors can be divided in three parts: (i) t < 1 (q0 < qD):
initial elastic response when the beam behaves in a linear and elastic
manner; (ii) 1 < tcr < 3 (q0 < qD < 3q0) : transition non-linear
response where the load–deflection is non-linear due to the gradual
plastification of the connectors; (iii) t > 3 (q0 > 3qD) asymptotic
linear response part where the connectors are all plastified and the
deflection increases linearly with respect the load increment.

4.3. Parametric analysis on Vh-s behavior of connector

A parametric analysis is carried out to assess the sensitivity of the
TCC structural response to the connector parameters of the simplified
connector law k, Vh0, Vhr as shown in Fig. 1b. The ductile TCC beam of
Fig. 5 is considered for this study, while the following connector

Fig. 7. Comparison of different methods in the plastic phase at t = q/qD = 148% in terms of distribution of (a) slip s; (b) axial force N; (c) timber moment Mt and (d)
shear flow Vh.

T.-T. Nguyen, et al. Engineering Structures 221 (2020) 110826

9



parameter have been considered: (i) k = 25, 50, 100, 200 and 400 N/
mm2 , while Vh0 = 100 N/mm, Vhr = 100%Vh0 ; (ii) Vh0 = 50, 100,
150, 200 and 250 kN/m, while k = 100 N/mm2, Vhr = 100%Vh0; (iii)
Vhr = 0%, 25%, 50%, 75% and 100% Vh0, while k = 100 N/mm2,
Vh0 = 100 N/mm.

Fig. 10a, b and c show the effect of the connector stiffness (k = 25,
50, 100, 200 and 400 N/mm2, while Vh0 = 100 N/mm, Vhr = 100%
Vh0) on the maximum slip, maximum load and the load–deflection
curve, respectively. For a ductile TCC, the connector stiffness does not
affect the ultimate load, but the deflection at lower load level. That is,
once all connectors have plastified, the maximum load does not depend
on the connector stiffness and it can be estimated by stress equilibrium
in the mid-span section as described by the Frangi’s method [42].
Furthermore, Nmax tends to approach about 200kN which is an
asymptotic value of axial force based on the asymptotic limit of Eq.(60),
which depends on Vhr only. Moreover, the deflection at failure wmax of
such ductile TCC structure does not depend on the connector stiffness k.
This observation can be explained by the asymptotic limit of Eq.(63):
when the load increases, the deflection function depends principally on
load q0 and Vhr.

Fig. 10d, e and f show the effect of the connector shear strength
(Vh0 = 50, 100, 150, 200 and 250 kN/m, while k = 100 N/mm2,
Vhr = 100%Vh0) on the maximum slip, maximum load and the load–-
deflection curve, respectively. While the connector strength has no ef-
fect on the initial response, it strongly affects the smax, Nmax and q0 at
the TCC collapse.

The strength Vh0 strongly affects the end-of-linearity (EOL) as shown
in Fig. 10a. Generally, when Vh0 increases, the axial force increases,
while the slip and deflection decrease. In the plastic domain, the
load–deflection response tends to have the same slope, which is shifted
by the Vh0 value. Interestingly, the ultimate deflection visibly reduces
by increasing Vh0 (Fig. 10f).

Fig. 10g, h and i show the effect of the connector residual shear
strength (Vhr = 0%, 25%, 50%, 75% and 100% Vh0, while k = 100 N/
mm2, Vh0 = 100 N/mm) on the maximum slip, maximum load and the
load–deflection curve, respectively. Vhr does not affect the initial linear
response, but it affects strongly the composite action Nmax and the ul-
timate load q0 at collapse. In general, when Vhr increases, the load at
failure and axial force increase while the slip and deflection decrease.

In general, based on the parametric results, the connector stiffness k
has a major effect on the initial structural stiffness in the elastic domain,
but its effect on both the ultimate load and maximum deflection is ra-
ther negligible. The connector strength Vh0 does not affect the initial
structural stiffness in the elastic domain, but it strongly affects the end-
of-linearity (EOL) load and the ultimate load. Finally, the residual
connector strength Vhr does not affect the initial structural response and
the EOL load, but it significantly affects the ultimate load. Both Vh0 and
Vhr affect the non-linear structural response by mainly vertically
shifting the load–displacement curve. Interestingly, the ultimate loads
seem to lay on a line, which means that the ultimate load reduces
somewhat linearly when both Vh0 and Vhr decrease. Finally, Fig. 10e
and 10f shows the advantage of the proposed method against the
Frozen shear method [10]. For instance, for the higher connection
strength Vh0 as 250kN is higher, the composite action Nmax is still in-
creasing during loading and the load–deflection curve is rather para-
bolic and can not be simplified by a simple bilinear curve. Moreover,
the FSM does neither consider the effect of the gradual plasticization of
the connectors on the ultimate load (Fig. 10f) nor the effect of residual
strength lower than Vh0 (Fig. 10i).

5. Simplified design method for a ductile TCC structure

5.1. Closed-form solution

This section presents a simplified method for estimating the struc-
tural response of a TCC structure (in terms of axial force, slip, deflectionTa
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and failure criterion) directly from the connector parameters (k, Vh0,
Vhr) for the assumed simplified shear law (GEP, EPP, BE) as shown in
Fig. 1b.

First, we need to estimate the axial force and the failure function at
different load levels t. The axial force Nmax can be estimated as
N q( )E

max 0 by Eq. (36) in the elastic phase and as N t( )P
max by Eq. (55) for

plastic phase, such as:

= =N q kLD q D q( )
3

E e
emax 0

3
0 4 0 (64)

= ⎧
⎨⎩

− + − + ⎫
⎬⎭

N t
D

V LD s D t
t

D s t( ) 1
2

[ (2 1)] 1 1 2P

e
hr e D e e Dmax

3
3 4 4

(65)

The latter tends to the asymptotic limit Nlim and is described by Eq.
(60) as =N V L 2hrlim . The failure criterion φ is calculated directly by
Nmax and Mmax by Eq. (58) as follows:

= + −φ t N t
A f

M t N t h E h
EI f

( ) ( ) [ ( ) ( ) ]
2

P

t t
T d

t t

t
B

max
max max

0 (66)

The values of Nmax and φ can be calculated at any point of load q0
(or t). Finally, the failure is reached when =φ 1. Similarly, the
asymptotic φlim is found also by Eq. (61) as

Fig. 8. For a ductile TCC structure, comparison of different methods in terms of: (a) failure function; (b) maximum slip; (c) maximum axial force; (d) deflection in
function of the applied load t.

Fig. 9. Comparison of the proposed solution with push-over method [59,61] and FEM solution [60] in terms of (a): applied load vs. deflection; (b) maximum axial
force vs. load.
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= −
−

= −
−

φ L E h
EI f

q t
L EA h h f EI f

A EI f f
V

L E h
EI f

q
L EA h h f EI f

A EI f f
V

16
( 2 )

4

16
( 2 )

4

t t

t
T D

t d t t
T

t
B

t t
T

t
B hr

t t

t
T

t d t t
T

t
B

t t
T

t
B hr

lim

2

0

0

0

2

0
0

0

0 (67)

For the sake of simplicity, Table 2 reports the design values at
loading levels t = q0/qD.

Then, the slip and the deflection at different load levels t are esti-
mated. The slip function is the maximum value at the beam end (x = L/
2). The function smax is estimated to be s q( )E

max 0 by Eq.(33) for the
elastic phase and s t( )P

max by Eq.(52) for the plastic phase as follows:

=s q D q( )E
emax 0 3 0 (68)

⎜ ⎟= + − ⎛
⎝

− − ⎞
⎠

−

⎛
⎝

− ⎞
⎠

s t s
D EI

h L s t
t

αV h

L
t

( ) 1
48

( 1) 3 1 1 1
8

1 1

P
D

e
d D hr dmax

3 0

3

2
(69)

Moreover, the asymptotic function slim is found by Eq. (62) as fol-
lows:

Fig. 10. Parametric analysis on Vh-s behavior of connector. Influence of connector stiffness k on: (a) smax, (b) Nmax (c) q0; influence of Vh0 on (d) smax, (e) Nmax, (f) q0;
influence of ratio Vhr/Vh0 (g) smax, (h), Nmax (i) q0.

Table 2
Design tables for estimating the maximum axial force and failure function.

t [–] xD [mm] q0 [N/mm] Nmax [N] Mmax [N mm]

0 L0.5 0 0 0
1 L0.5 =qD

s
De

0
3

sDe
De

4
3

0 qL
D

2

8
1.25 L0.276 q1.25 D +De s Vhr LDe

De

0.467 4 0 0.223 3
3 qL

D
5 2

32
1.5 L0.211 q1.5 D +De s Vhr LDe

De

0.345 4 0 0.287 3
3 qL

D
3 2

16
1.75 L0.173 q1.75 D +De s Vhr LDe

De

0.277 4 0 0.327 3
3 qL

D
7 2

32
2 L0.146 q2 D +De s Vhr LDe

De

0.232 4 0 0.353 3
3 qL

D
2

4
3 L0.0915 q3 D +De s Vhr LDe

De

0.142 4 0 0.408 3
3 qL

D
3 2

8
6 L0.0436 q6 D +De s Vhr LDe

De

0.0663 4 0 0.456 3
3 qL

D
3 2

4
10 L0.0257 q10 D +De s Vhr LDe

De

0.0388 4 0 0.474 3
3 qL

D
5 2

4
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⎠
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(70)

The maximum deflection wmax at mid-span (x = 0) is obtained
analytically in the elastic phase by Eq. (39):

= − −w q L h D L
EI

q( ) (192 25 )
1920

E d e
max 0

2
4

2

0
0 (71)

In the plastic phase, wmax is calculated from Eq.(57) and the ex-
pression is more lengthy as below:

=
−

− −
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625
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2 4
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2 1
4 3

3
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2

1
2

2 1
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2 1
2

3
8 4

2

(72)

An asymptotic function wlim is found by Eq. (63) when the load
increases.

= − = −w L
EI

s
D

t L h
EI

V L
EI

q L h
EI

V5
384 24

5
384 24

D

e

d
hr

d
hrlim

4

0 3

3

0

4

0
0

3

0 (73)

Table 3 summarizes the maximum slip and maximum deflection at
different load levels t = q0/qD. The ductility of the structure can be
easily estimated by =μ w wcr D where = =w w t( 1)D max
and = =w w t t( )cr crmax , which can be easily calculated from Table 3.

The model applicability is limited to TCC beams with connectors
with a ductile shear law which is similar to the ones shown in Fig. 1b.
By considering the experimental connector shear law (Vh-s), one should
verify that the elasto-plastic connector law (Fig. 1b) is still valid up to
the maximum slip (smax) which corresponds to the ultimate load of the
TCC beam.

5.2. Design procedure

The input variables needed for predicting the structural behaviour
of TCC structure are:

• the connector parameters (k, sD and Vhr) describing one of the 3
possible simplified shear laws (GEP, EPP, BE) as shown in Fig. 1b;

• the material properties (Young’s modulus of concrete and timber Ec,
Et) and the timber strength under tension and bending ( ft

T , ft
B);

• the geometrical parameters (inertia and areas Ic, Ac, It, Ac) and
distance of the centroid of mass of the two sections hd.

Based on these data, it is possible to estimate the coefficients De1

and De2 from Eqs. (29), De3 from Eq.(31) and De4 from Eq. (37). The
latter coefficient depends on the connection stiffness k. Finally, qD is
calculated from Eq.(40) in function of the connector parameter sD and
De3.

Given the input variables, it is then possible to estimate the struc-
tural response of a TCC structure in terms of deflection, slip and axial
force at different loading levels by Table 2 and Table 3. In summary, the
TCC structural response can be estimated by the following step-by-step
procedure:

(1) Calculate the maximum axial force Nmax and failure function φ from
Table 2 at different load levels t;

(2) Calculate the maximum slip smax and maximum deflection wmax

from Table 3 at different load levels t;
(3) Identify the critical load level t = tcr at failure (φ=1) by linear

interpolation;
(4) If tcr < 1 (failure in the elastic phase), it is possible using linear

analytical methods such as the γ–method;
(5) If 1 < tcr < 3 (failure in the non-linear transition response), in-

terpolate the values of Nmax, smax, wmax at failure (Ncr, scr, wcr) by
using qcr and tcr.

(6) If tcr > 3 (failure in asymptotic part), it is possible to calculate the
values of Ncr, scr, wcr by using the asymptotic functions.

As schematically illustrated in Fig. 11, the structural response of a
TCC structure with ductile connectors (as the ones assumed in Fig. 1b)
shows three different domains: (i) the initial elastic domain (i.e., timber
breaks in tension before any connectors yield); (ii) the nonlinear re-
sponse with moderate structural ductility during the transition between
the elastic and asymptoti behaviour (i.e., timber breaks in tension while
connectors have started to yield); (iii) the final asymptotic response
with high structural ductility (i.e., timber breaks in tension after all
connectors have yielded). Notably, one can use the proposed design
procedure not only for predicting the structural response, but also for
assuring that the designed TCC structure has the desired structural
ductility.

Table 3
Design tables for predicting the maximum slip and maximum deflection.

t [–] xD [mm] q0 [N/mm] smax [mm] wmax [mm]

0 L0.5 0 0 0
1 L0.5 =qD

sD
De3

sD − −L dDe L
EI

s
De

2 (192 4 25 2)
1920 0

0
3

1.25 L0.276 q1.25 D + −s αdV L0.0133 0.025D
ds L

EI De
hr

0 3

0 3
2 − −s L Vhr dDe L De ds L

EI De

0.0163 0 4 0.0261 3 3 0.0333 4 0 2

0 3
1.5 L0.211 q1.5 D + −s αdV L0.0252 0.0417D

ds L
EI De

hr
0 3

0 3
2 − −s L Vhr dDe L De ds L

EI De

0.0195 0 4 0.0321 3 3 0.0201 4 0 2

0 3
1.75 L0.173 q1.75 D + −s αdV L0.0366 0.0536ds L

EI De
hr0

0 3

0 3
2 − −s L Vhr dDe L De ds L

EI De

0.0227 0 4 0.0351 3 3 0.0137 4 0 2

0 3
2 L0.146 q2 D + −s αdV L0.0478 0.0625ds L

EI De
hr0

0 3

0 3
2 − −s L Vhr dDe L De ds L

EI De

0.0260 0 4 0.0368 3 3 0.00997 4 0 2

0 3
3 L0.0915 q3 D + −s αdV L0.0910 0.0833ds L

EI De
hr0

0 3

0 3
2 − −s L Vhr dDe L De ds L

EI De

0.0391 0 4 0.0397 3 3 0.00402 4 0 2

0 3
6 L0.0436 q6 D + −s αdV L0.217 0.104ds L

EI De
hr0

0 3

0 3
2 − −s L Vhr dDe L De ds L

EI De

0.0781 0 4 0.0412 3 3 0.000928 4 0 2

0 3
10 L0.0257 q10 D + −s αdV L0.385 0.113ds L

EI De
hr0

0 3

0 3
2 − −s L Vhr dDe L De ds L

EI De

0.130 0 4 0.0415 3 3 0.000325 4 0 2

0 3
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5.3. Statistical validation

This section aims at carrying out a wide range validation of the
proposed procedure for TCC structures with different beam span,
timber and concrete section, concrete kind, connector stiffness, etc. The
configurations were chosen arbitrarily by selecting a very wide range of
parameters for residential floor system, which consider the current
construction practise in Canada and future trends. The parameters of
the composite beam are determined as follows:

(1) Span: L = 4000, 8000, 12,000 [mm]
(2) Concrete kind: we consider some typical values for 3 classes of

concretes UHPFRC Ductal JS 1000 [62], HPC King HP-S10 [63],
Normal concrete NC [64] which present the mechanical char-
acteristics as follows Table 4:

Height of concrete slab: the slab thickness is assumed for each kind
of concrete is assumed to have a similar flexural stiffness, such as

=h h h: : 1.0: 0.9: 0.8c
NC

c
HPC

c
UHPFRC where =h L 80c

NC ;

(3) The width of the timber bt is chosen to have the following range of
ratio EIt/EIc = 2, 4, 8 respectively.

(4) Composite degree of Y = 0.2,0.5,0.8, which are respectively low,
average and high degree of composite, respectively. The composite

degree Y is a parameter for evaluating the composite action in terms
of flexural stiffness as = − −∞Y EI EI EI EI( ) ( )eff 0 0 . The composite
degree Y expressed the composite action in terms of the effective
bending stiffness EIeff of the composite beam, while γ represents a
non-dimensional factor for the composite action for which
EIeff = EI0 for γ = 0 andEIeff = ∞EI for γ = 1.

The effective concrete slab width bc is determined in CSA A23.3–14
[65] and CSA S16-14 [66] as =b L h bmin( 4, 24 , )c c 2 where b2 is the
timber spacing. In this case, we assumed that the effective width is
determined by the span such as =b L 4c . The height of timber beam is
fixed L/20 to minimize the effect of timber shear on the deflection; For
the timber we choose typical value for Glulam from a commercial da-
tabase (i.e., Nordic Lam 24F-ES/NPG [67]) which presents elastic
modulus Et = 13.1 GPa and average strength ftT = 30.6 MPa,
ftB = 46.1 MPa, ftC = 50.5 MPa.

As for the choice of a ductile connector, the experimental shear
behaviour of notch connectors with steel fasteners as shown in Fig. 12a
is considered from [16]. As shown in the same figure, two possible
shear laws GEP1 and GEP2 have been investigated to simplify the ex-
perimental shear law. The structural response predicted by the ex-
perimental shear law and the simplified shear laws GEP1 and GEP2 is
compared with FEM analysis. The accuracy of the simplified shear law
GEP to reproduce the structural response of the experimental shear law
is rather satisfactory.

Based on the combination of the considered parameters, 81 possible
TCC beams were analyzed. The collapse failure is always assumed to be
the lower fiber of timber beam under combination of bending and
tensile solicitation. Based on the proposed method, 22% TCC beams
collapse in the elastic phase (tcr < 1), 56% TCC beams collapse in the
non-linear transition part with moderate ductility (1 < tcr < 3), and
22% TCC beams collapse in the asymptotic linear phase with enhanced
structural ductility (tcr > 3). This demonstrates the importance to have

Fig. 11. Possible modes of structural behavior of a TCC structure with elastic beams and ductile connectors as shown in Fig. 1b.

Table 4
Mechanical properties of the considered concrete kinds.

Property UHPFRC HPC NC

Elastic modulus Ec [GPa] 50 31.2 23.4
Compressive strength fcC [MPa] 140 60 30.2
Tensile strength fcT [MPa] 8 4.6 2.9

Fig. 12. Comparison of the experimental connector law and simplified GEP for the proposed model.
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a simplified model to predict also a possible failure in the transition
regime while connectors yield gradually.

5.3.1. Without concrete slab cracking
Fig. 13a, c, and e compare the prediction accuracy of the proposed

model against FEM analyses for the proposed connector law for the
maximum moment Mcr, maximum deflection wcr, and maximum slip scr,
respectively. Analogously, Fig. 13b, d, and f show the ratio between the
GEP and FEM variable. In spite of the model simplicity, its accuracy is
satisfactory especially beyond the limit of elasticity. Fig. 13b shows that
the moment Mcr is well predicted for both ranges in which the con-
nectors start to yield (transition zone 1 < t < 3) and all yield
(asymptotic range t > 3). Fig. 13b shows that the maximum error in
the prediction of the critical moment is about 10% in the elastic domain
and 2% in the plastic domains. Fig. 13d shows that the GEP model
predicts less precisely the ultimate slip with an error of 20–30% in the

elastic domain, which reduces to 10–15% in the plastic domain.
Nevertheless, Fig. 13e shows that the simplified GEP model predicts
also the maximum deflection wcr in the plastic domain with good ac-
curacy. However, the prediction of the maximum deflection of the
brittle TCC beams which collapse in the elastic domain is less sa-
tisfactory with an error of about 30%.

It is interesting to notice from Fig. 13b that connectors with a high
composite degree Y failed in the elastic regime. This is due to the fact
that when the connection stiffness is very high, the connection strength
it is also very high and not achieved by the structure at collapse. On the
critical momentMcr, the Fig. 13 (a) and (b) shows that the span length L
is dominant factor. At a given value of L, the ratio EIt/EIc takes influence
by significantly increasing the Mcr. while ratio Y plays only a major role
in the failure type. The ratio EIt/EIc has less influence on wcr. On the
critical slip wcr, the Fig. 13 (c) and (d) shows that ratio Y becomes the
dominant factor when Y = 0.8 leads a small critical slip despite L. The

Fig. 13. Comparison of proposed method GEP vs. FEM solution for all 81 TCC cases without concrete crack for: (a, b) maximum moment Mcr (c, d) ultimate deflection
wcr; (e, f) ultimate slip scr.
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span length only shows the influence when Y decreases to 0.5 and 0.2.
On the critical deflection wcr, the Fig. 13 (e) and (f) shows that L is still
most important factor while ratio Y also take a significant role.

5.3.2. Accounting for concrete slab cracking
The contribution of the concrete moment is often secondary with

respect to the timber and composite moments for a TCC structure.
However, the reduction of the concrete section by a upward translation
of the neutral axis may reduce the moment contribution due to the
composite action [39]. Schanak et al. showed that the importance of the
concrete slab cracking is relevant only for TCC slab with rather low EIt/
EIc ratios, i.e., with rather thick concrete slab [68]. Although the pro-
posed model does not account the effect of possible cracking of the
concrete slab, this section aims at assessing the error of the model

prediction in the case of slab concrete cracking. Thus, the 81 cases of
TCC beams were analyzed with non-linear FEM analysis [39] taking
into account typical tensile stress–strain relationship for the 3 kind of
concretes as Fig. 14.

Fig. 15 compares the results in terms of Mcr, scr and wcr for the
proposed GEP model and the FEM analysis with concrete cracking. The
proposed model can overestimate the Mcr of ductile TCC beams with
low EIt/EIc ratio of 2 can be up to 30%. However, for TCC beam with
more conventional EIt/EIc ratio of 4 and 8, the error reduces to 10–15%.
It is also interesting to notice that the error is much reduced in the case
of UHPFRC concrete as the tensile strength reduces the uplift of the
neutral axis and the loss of composite action. Interestingly, the pro-
posed model well predicts the critical deflection of ductile TCC struc-
tures.

Based on the statistical analysis in section Table 5 proposes ad-
justment factors for accounting for the effect of concrete cracking on
predicting Mcr (or qcr), wcr, scr at the structural failure with the effect of
slab concrete cracking.

Fig. 14. Tensile stress-strain relationship assumed for NC, HPC and UHPFRC.

Fig. 15. Comparison of proposed method GEP vs. FEM solution for all 81 TCC cases with concrete crack for: (a), (b) Mcr; (c) scr; (d) wcr.

Table 5
Adjustment factors for cracking concrete.

Predicted variable Transition response
1 < t < 3

Asymptotic response
t > 3

Mcr 0.85 0.75 for EIt/EIc < 3
0.85 for EIt/EIc > 4
0.9 for EIt/EIc > 6

wcr 1.05 1.05
scr 1.25 1.15
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6. Concluding remarks

This work proposes an analytical closed-form solution for predicting
the structural response of a TCC structures with ductile shear con-
nectors. Based on the presented results, the following conclusions can
be drawn:

(1) It was possible to obtain an analytical solution of the method pro-
posed by Bažant and Vitek and Baby assuming an approximate slip
distribution for the plastic domain and a simplified shear law, such
as, Generalized Elasto-Plastic (GEP), Perfectly Elasto-Plastic (PEP)
or Brittle-Elastic (BE) as shown in Fig. 1b:

(2) The goodness of the approximate solution in predicting the full
structural response of the TCC structure was validated against
linear methods and numerical FEM analysis in both linear elastic
and plastic domain. The proposed method slightly underestimates
the elastic response, but it well predicts the structural response of
the TCC beam when the connectors gradually yield. In particular,
the proposed method provides a better estimation of the inelastic
structural response and ultimate load than the Frozen Shear Method
(which assumes a simultaneous plasticization of the connectors);

(3) It was found by proposed method that the a plastically designed
TCC structure with elasto-plastic shear law tends to a linear
asymptotic structural response when all the connectors have
yielded;

(4) A simplified point-to-point method (based on Tables 2 and 3) has
been proposed for predicting the structural response in terms of
deflection, slip and moment at different load levels directly from
the 3 parameters of the connector shear law and the materials'
property. Notably, the analytical proposed model can be employed
to design TCC structures with a desired structural ductility;

(5) Based on the parametric analysis on different TCC beams, the ro-
bustness of the proposed method in predicting the maximum mo-
ment, deflection and slip of ductile TCC structure has been vali-
dated. Note that the proposed model is not meant for predicting the
structural response of a brittle TCC structure with a timber collapse
before the connector yielding, for which the γ-methot is still re-
commended;

(6) The effect of concrete cracking on the prediction of the TCC
structural response of the proposed model has been verified by non-
linear FEM. This effect is particular important for TCC structure
with (EI)c/(EI)t lower than 4 and a correction factor has been
proposed. When a UHPFRC slab is employed, the model prediction
for the ultimate moment is fairly satisfactory as the tensile strength
reduces the loss of composite action.

Future works shall focus on the following improvements or model
extensions, such as: (i) continuous TCC beams; (ii) non-uniform dis-
tribution of ductile connectors; (iii) the effect of possible uplifts be-
tween timber and concrete in proximity of the supports at failure load;
(iv) a statistical study on the effect of the variability of material prop-
erty on the predicted structural response to assure that the ductile
connection failure always occurs before the timber failure; (v) the
proposed shear law should be generalized with a softening brunch to
account for more general connector law.
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